1.铸造裂纹的分类和机理分析
1.1 铸造裂纹的分类
按其形成过程通常将铸造裂纹分为热裂纹与冷裂纹。热裂纹是在有效结晶区间(自线收缩开始温度起,至不平衡固相线温度止的结晶温度区间)形成的裂纹。以圆铸锭为例,其宏观表现形式为表面裂纹、中心裂纹、环状裂纹、放射状裂纹、浇口裂纹等[1,2],如图1~5所示。冷裂纹是指合金(词条“合金”由行业大百科提供)低于合金固相线温度时形成的裂纹[3],多发生在200℃左右。侧裂、底裂、劈裂多为冷裂纹。
变形铝合金连续铸锭中的冷裂纹和热裂纹的特征示于表1。
冷裂常出现在铸件受拉伸的部位,那些壁厚差别大、形状复杂的铸件,尤其是大而薄的铸件易发生冷裂纹。凡是能增加铸造应力、降低铸造强度和塑性(词条“塑性”由行业大百科提供)的因素都将促使冷裂纹的发展。
热裂纹是一种普通又很难完全消除的铸造缺陷,除Al-Si合金外,几乎在所有的工业变形铝合金中都能发现。关于热裂纹的形成机理主要有强度理论、液膜理论和裂纹形成理论3种。其中,强度理论比较通用,该理论从对合金高温力学性能的研究结果出发,认为所有合金在固相线温度之上的固液区内都存在着一个强度极低、延伸率极小的“脆性温度区间”,合金在这个区间冷却时,当收缩而产生的应力如果超过了此时金属的强度,或者由应力而引起的变形超过了金属的塑性,就会导致热裂纹的产生。
在生产过程中一般不存在纯粹的热裂纹或冷裂纹,大部分都先产生热裂纹,然后在冷却过程中由热裂纹发展成为冷裂纹。
2 铸造裂纹产生的本质原因
在凝固末期,铸件绝大部分已凝固成固态,但其强度和塑性较低,当铸件的收缩受到铸型、型芯和浇注系统等的机械阻碍时,将在铸件内部产生铸造应力,若铸造应力的大小超过了铸件在该温度下的强度极限,即产生热裂纹。而冷裂纹是在铸件凝固后冷却到弹性状态时,因局部铸造应力大于合金极限强度而引起的开裂。总结可知,产生铸造裂纹的本质原因是由于组织内应力与外部机械应力太大,超过材料塑性变形能力,引起金属组织不连续而开裂。
3.防止铸造裂纹产生的措施
铸造裂纹的影响因素归纳起来主要与熔体质量、铸造设备、铸造工艺条件和晶粒组织有关。因此可从这四个方面入手,采取对应措施来防止铸造裂纹的产生。
3.1 保证熔体的质量
3.1.1 减少熔体中杂质的含量
段玉波等[5]对7050合金铸造工艺进行了研究,提出对化学成分的优化,可以提高合金的成型性,减少铸锭开裂。
杂质含量高时,合金组织中晶格畸变量增大,内应力增大,抵抗塑性变形能力大大下降,导致合金易于开裂。对于铝及铝合金,Fe、Si是其主要杂质元素。它们主要以FeAl3和游离硅存在。当硅大于铁,形成β-FeSiAl5(或Fe2Si2Al9)相,而铁大于硅时,形成α-Fe2SiAl8(或Fe3SiAl12)相[6]。当铁和硅的比例不当时,会引起铸件产生裂纹。
此外,其它杂质元素也需相应控制。当合金中存在钠时,在凝固过程中,钠吸附在枝晶表面或晶界,热加工(词条“热加工”由行业大百科提供)时,晶体上的钠形成液态吸附层,产生脆性开裂,即“钠脆”。碱金属钠(除高硅合金外)一般应控制在5×10-4%以下,甚至更低,达2×10-4%以下。像K、Sn等低熔点(词条“熔点”由行业大百科提供)杂质元素少量存在也会使合金性能变脆,易于开裂。这主要是由于低熔点杂质元素在凝固时后结晶,往往包在晶界周围,导致凝固收缩时受拉应力而沿晶开裂。所以需对铝液中的杂质含量进行合理调配,控制其含量。
3.1.2 减少熔体的含气量和夹杂物含量
铝及铝合金熔炼、保温时,空气和炉气中的N2、O2、H2O、CO2、H2、CO和CmHn等要与熔体在界面相互作用,产生化合、分解、溶解和扩散等过程,最终使熔体产生氧化和吸气。其氧化生成物有A12O3、SiO2、MnO和MgO等,其中Al2O3是主要的氧化夹杂物[7]。其中,对于非金属夹杂要求其数量少而小,其单个颗粒应少于10μm;而对于特殊要求的航空、航天材料、双零箔等制品的非金属夹杂的单个颗粒应小于5μm。
由于熔体吸收的气体中H2占85%以上[8],且氢在熔体中的溶解度随温度的降低而减小,因而在熔体结晶凝固时有大量气体析出,未及时逸出的便在铸锭中形成气孔。夹杂物和气孔都可削弱晶粒间的联结,造成应力集中,使铸锭的塑性和强度下降,从而导致铸造裂纹。一般来说,普通制品要求的产品氢含量控制在0.15~0.2mL/(100g Al)以下,而对于特殊要求的航空、航天材料、双零箔等氢含量应控制在0.1 mL/(100g Al)以下。
3.2 调整铸造设备状况
3.2.1 结晶器
以热顶铸造结晶器为例(图6),其结晶器是由隔热的热顶部分和未隔热的冷却部分组成的,通常是由2A50合金锻造毛坯或紫铜加工而成。而结晶器的材质、高度、水套中间水孔、内腔断面形状、二次冷却水孔位置和均匀性,及其安装的平整性,对铸造裂纹都有影响。
铜质结晶器由于传热速度快,导致过冷度增大,对于合金结晶范围较宽的大规格铸锭易产生裂纹。在半连续铸锭生产中,大多采用矮(短)结晶器。但采用矮(短)结晶器时,铸锭的温度梯度大,其收缩应力大,故易产生心部裂纹。结晶器高度一般为80~200mm。常见的结晶器高度与铸锭直径的关系如表2所示。而水套中间水孔的截面由于对铸锭的结晶凝固有影响,故对裂纹的产生有影响。结晶器的内腔断面形状不合理,二次冷却水孔位置不适当及均匀性不好,在凝固时会产生不均匀收缩,而导致铸锭裂纹。另外,结晶器安装不平整,在铸造时会对铸锭刚凝固的外壳部分产生弯矩(词条“弯矩”由行业大百科提供)作用,将导致铸锭表面裂纹。
表2 常见的铸锭直径和结晶器高度的关系